

実飛灰洗浄水を用いたインドラム式ガラス 固化技術による放射性Cs固化の実証研究

東京工業大学 理事副学長特別補佐 福島復興・再生研究ユニット代表 竹下 健二

第11回環境放射能除染学会 企画セッション「知のネットワーク」 令和4年8月25日

実飛灰洗浄水中の放射性Csのインドラムガラス固化

<u>本研究の目的</u>

- ・ 飛灰洗浄水に対するインドラム式ガラス固化技術の実証
- 低温ガラス固化(ポルサイト分散ガラス)技術の実証(Cs揮発抑制、低浸出、水素不生成) <u>数値目標</u>
- ・ 廃棄物の体積減容率:10000分の1以下
- ・ ガラス固化体から水への浸出率:セメント固化の100分の1以下

インドラム式ガラス固化技術による飛灰洗浄処理水から のCs固定化

本研究では、赤枠内の「飛灰洗浄水からのCsの濃縮回収プロセス」と 緑枠内の「インドラムガラス固化プロセス」を検討する。

PB-MCによる模擬飛灰洗浄水からのCs回収

JESCOから情報に基づき模擬飛灰洗浄水を調整した。

	香亭 (み/1)	·)))))))))))))))))))	
	里里 (9/リ)	辰皮 (III01/1)	
NaCl	60	1.03	
KCI	80	1.07	つっ万倍
CaCl ₂	0.5	4.51×10 ⁻³	
MgCl ₂	0.055	5.78×10 ⁻⁴	濃度差
CsCl	0.008	4.75×10 -5	

吸着試験後のPB-MCを熱分解し、残渣の水洗浄で得られたCs回収液の分析結果

吸着条件	Ca (44) (mg/l)	Cs (133) (mg/l)	K (39) (mg/l)	Mg (24) (mg/l)	Na (23) (mg/l)
PB-MC <mark>0.2g</mark> + 飛灰洗浄水 1L	ND	140	317	ND	101
PB-MC <mark>0.4g</mark> + 飛灰洗浄水 1L	ND	272	294	ND	99

PB-MCはCsを選択吸着 Cs>>K>Na。Cs吸着量の増加でK,Na吸着量は減少4

インドラムガラス固化装置全体図

Tokyo Tech

排ガス処理系にガストラップ装置を増設

 ϕ :60.5 mm ϕ :114.3 mm

ガラス溶融装置に排ガス処理系(気相ガストラップ装置)を加えた →ガラス固化により揮発するCsをトラップし、回収・再固化へ

ガラス固化試験(ガラス固化体の作製手順)

1. 原料調製

- ・ガラス原料(PF798-N10, Na₂O 10 wt%)
- ・Cs回収液(Cs, Na, KNO₃を加熱溶解)

2. ドラム中での乾固

・ガラス原料とCs回収液をドラムに入れ、90 ℃で真空引き(-0.06 MPa)し、蒸発 乾固。さらに約90 ℃の水を追加し上部に溜まった塩を洗い落として蒸発乾固

3. ガラス原料+Cs回収水の乾固体のガラス固化

- ・2で製造した乾固体を電気炉中N2雰囲気中(100 ml/min.)でガラス固化
- ・昇温方法は以下の通り。
 - ①室温から10 ℃/minで300 ℃まで昇温、30分保持
 - ② 10℃/min.で900/950 ℃まで昇温、 3-12時間保持
 - ③自然冷却

インドラムガラス固化プロセス

【固化体容器(ドラム)】 高さ:200mm V-150:直径 165.2mm V-100:直径 114.3mm V-50: 直径 60.5mm 【ガラス溶融炉】 高さ:604mm 奥行:748mm 幅:600mm

ガラス固化体製造条件(予備試験)

	i	i	i	i	i
固化体ID	G21	G22	G23	G24	G25
ドラム径 (cm)	5	5	5	5	5
Glass重量 (g)	300	300	300	300	300
CsNO ₃ 重量 (g)	60	66	60	66	66
NaNO ₃ 重量 (g)	15	16.5	15	16.5	16.5
KNO ₃ 重量 (g)	0	0	6	0	6.6
Cs ₂ O換算 wt% (CsNO3 wt%)	14.5 (20)	15.9 (22)	14.5 (20)	15.9 (22)	15.9 (22)
Na ₂ O wt% (NaNO3換算 wt%)	1.82 (5)	2.01 (5.5)	1.82 (5)	2.01 (5.5)	2.01 (5)
K ₂ O wt% (KNO3換算 wt%)	0 (0)	0 (0)	0.93 (2)	0 (0)	1.02 (2.2)
H ₂ O量 (ml)	270	270	270	270	270
	000	000	000	050	050

G21ガラス固化体

Cs₂O 14.5wt%, Na₂O 1.82wt% K₂O 0 wt%, T=900°C

ウォータージェットにより切断

- ■H31年度条件からスケールを2倍
 - →ポルサイト結晶がガラスに分散した固化体(コンポジット型)
 →再現性あり
- 硝酸および亜硝酸発生によりガストラップ内pHの低下

■ Cs含有量の増加の影響 (Cs₂O換算で14.5 wt%→15.9 wt%)

ウォータージェットにより切断

- Cs含有量を15.9 wt%まで増加→わずかに相分離傾向 ・均質化のためには、Cs含有量15wt%程度が最適。
 - ・発生NO_x量も増えることでガス抜けが不十分になる。

- ・Kは固化体の均質化を阻害する傾向。
 - ・発生NO_x量も増えることでガス抜けが不十分になる。

ガラス固化予備試験のまとめ

900℃での作製→Csはポルサイトとしてガラス中に分散保持(コンポジット型固化体) 950℃での作製→固化体はガラス化(ガラス固化体)

- 飛灰洗浄水中に、多量に含まれる K+ は、ガラス固化において 均質性を阻害し、固化体の相分離傾向を強める
- Cs+吸着量を増やして共吸着するK+量を減らし、ガラスへの K+移行量低減のための前処理技術の開発

- フェロシアン化鉄、フェロシアン化銅、フェロシアン化ニッケルなどの吸着剤を用いて、K+よりCs+を吸着しやすい吸着材を見出す。
- さらに、フェロシアン化物に吸着したK⁺量を低減するために、NH₄⁺による イオン交換で吸着しているK⁺を脱離させる。

 $Cs^{+}(aq) + K^{+}-A(s) \overrightarrow{K}^{+}(aq) + Cs^{+}-A(s)$ $NH_{4}^{+}(aq) + K^{+}-A(s) \overrightarrow{K}^{+}(aq) + NH_{4}^{+}-A(s)$

インドラム式ガラス固化技術による飛灰洗浄処理水から のCs固定化

15

模擬飛灰洗浄水の組成及びフェロシアン化物

模擬飛灰洗浄水: Cs及び1000 ppmを超える金属イオン

	mg/L	mol/L
Zn	2100	3.21×10 ⁻²
Cs	3.5	2.63×10 ⁻⁵
Na	22000	0.957
К	36000	0.921
Са	1500	3.74×10 ⁻²

塩化物塩を1 L蒸留水に溶解して作製

試験に用いたフェロシアン化物

フェロシアン化鉄 フェロシアン化銅 フェロシアン化ニッケル

回分式吸着試験(吸着剤 1g/模擬飛灰洗浄水 1L)

模擬飛灰洗浄水 1 L, 吸着剤 1 g (固液比 = 1000) 5 h, 220 rpmで撹拌、ICP-AESで濾液中の非吸着成分を分析

金属イオン	吸着率(%) PB-MC	吸着率(%) CuHCF	吸着率(%) NiHCF
Zn ²⁺	6.8	6.2	7.8
Cs+	(100)	(100)	(100)
Na+	5.6	9.2	2.6
K +	2.4	1.6	0.6
Ca ²⁺	1.5	4.2	0

○Zn: いずれの吸着剤もわずかに吸着(骨格置換型、燃焼後はZnOになると思われる) ○Csはいずれの試料ND: 吸着剤1gによる試験では全量吸着 ○K吸着量は、CuHCFが最も少ない。

○マトリックス中のNa, K量が多く、定量性に欠けるため、燃焼溶出後の元素分析から 再度定量する。
18

燃焼試験用ロータリーキルン炉

Cs吸着後吸着剤の燃焼試験温度プログラム

燃焼温度プログラム はこれまでのPB燃焼 試験の知見から決定

1M NaOH

- Cs吸着フェロシアン化物(1g)の燃焼試験後、熱分解残渣に100 mL蒸留水を加え、24h, 100 rpmで振盪溶出
- 濾過(洗浄水100mL)により固液分離後、溶出液の金属組成を分析

フェロシ アン化 金属	Zn (mg/L)	Na (mg/L)	K (mg/L)	Ca (mg/L)	Cs (mg/L)	K/Cs 比
РВ-МС	36.7	25.9	172.3	30.0	9.8	17.6
CuHCF	0	13.9	60.4	0	13.4	4.50
NiHCF	0	5.5	18.4	0	17.1	1.08

- Ni系でK/Csの分配比が最も良く、Cs:K = 1:1程度
- K/Cs比は、PB-MCで17.6、CuHCFで4.5程度

模擬飛灰洗浄水と溶出液のCs⁺、K⁺濃度を測定し、その結果からCs/K濃縮係数 K_{Cs/K}を求めた。

飛灰洗浄水
中のCs+、
K+濃度

 $K_{Cs/K} = ([Cs^+]/[K^+])_{eluent} / ([Cs^+]/[K^+])_{init}$

eluent:溶出液中 init:模擬飛灰洗浄液中

	Cs 初期 濃度 (mol/L)	K 初期 濃度 (mol/L)	初期 濃度比 [K]/[Cs]	溶出Cs濃度 (mol/L)	溶出K濃度 (mol/L)	Cs/K 濃縮係数 K _{Cs/K}
РВ-МС	2.91×10 ⁻⁵	0.921	31636	1.48×10 ⁻⁵	8.81×10 ⁻⁴	529
CuHCF	2.73×10 ⁻⁵	0.921	33701	2.02×10 ⁻⁵	3.09×10 ⁻⁴	2203
NiHCF	2.61×10 ⁻⁵	0.921	35245	2.57×10 ⁻⁵	9.40×10 ⁻⁵	9625

NH₄+処理と2回目吸着試験

22

吸着燃焼試験後、熱分解残渣に100 mL蒸留水を加え、24h, 100 rpmで振盪溶出。 濾過(洗浄水100mL)により固液分離後、溶出液をICP-AES, MSで分析。

	Na (mg/L)	K (mg/L)	Cs (mg/L)	K/Cs比 NH₄処理前後
PB-MC NH ₄ ⁺ 処理後	0.5	0.9	8.4	17.6→ 0.11
CuHCF NH ₄ +処理後	0.5	0.4	13.8	4.5→ 0.029
PB-MC 2回吸着	12	67	25.5	2.6
CuHCF 2回吸着	5.2	51	55.6	0.92

○NH₄+の後処理によりCsはK の 9.3倍 (PB-MC), 34.5倍 (CuHCF)を達成

 $NH_{4}^{+}(aq) + K^{+}-A(s) \rightarrow K^{+}(aq) + NH_{4}^{+}-A(s)$

固液比1000での吸着試験を実施した各種吸着剤について、燃焼・溶出試験後の固体残渣に含まれる元素をXRFで分析

	PB-MC残渣 mass%	CuHCF残渣 mass%	NiHCF残渣 mass%	
Cs	0.0454	0	0	
Na	10.9	10.1	11.3	
K	3.02	2.44	2.56	
Са	0.478	0.225	0.204	
Zn	12.6	6.37	10.3	
Cl	5.32	4.05	4.75	
Fe	66.9	26.9	31.6	
Cu	0	47.7	0	──吸着剤由来
Ni	0	0	38.9	

水による振盪溶出で全量回収可能。

ガラス300 g, Cs 10 wt%, K 2 wt%, Cs/K = 5

- 均質なポルサイト結晶含有ガラス
- Csを10 wt%(対ガラス)程度に押さえれば、Kを1/5程度含有していても均質なハイブリッド固化体が900℃で作製可能

ガラス300 g, Cs 10 wt%, K 5 wt%, Cs/K = 2

ガラス300 g, Cs 10 wt%, K 10 wt%, Cs/K = 1

ガラス1200 g, Cs 15 wt%, K 0.44 wt%, Cs/K = 34.5 (CuHCFNH₄+後処理)

ウォータージェットにより切断

(固化前ガラスカレット高さ = 11 cm)

■ 均質なポルサイト微結晶含有ガラス固化体

CuHCF吸着NH₄+後処理したCs混合物水溶液組成を用いれば、Csを15wt%まで高充填化可能
 27

G311ガラス固化体 耐水性試験

中央部から1cm角立方体を切り出し

浸出試験条件

ANSI/ANS-16.1-2019 T = 20 ℃ 浸出液交換頻度: 30秒、1時間、3時間、6時間、 1日、2日、3日、4日、5日

○ 規格化浸出率:3.9×10⁻⁶ g/cm²/day

浸出試験前後のG311固化体重量変化

表面積 (cm²)	5.89
試験前重量 (g)	2.3969
試験後重量 (g)	2.3967

浸出試験後0.2 mgの重量減少

セメントやセラミックス固化体と比較して、4桁程度 小さい値を達成

L値 6 以上で低レベル放射性廃棄物の固化体として有効 ^{100 200} →非常に高い耐水性を有し、Csの安定固化が可能 →コンポジット型固化体は、外部へのCsの浸出に対して、 ポルサイト結晶とガラスの2重の防壁が存在することで、高い耐水性

28

試験室全景

中間貯蔵施設区域内の技術実証フィールド に仮設建屋を建設し、各工程(フェロシア ン化物へのCs吸着工程、Cs吸着フェロシ アン化物の熱分解・水洗浄工程、インドラ ム式ガラス固化工程)を実施するのに必要 な試験機材を設置した。

ホット試験室の構成

ホット試験の試験フロー

ホット試験 放射能収支

浅地層処分(トレンチ処分、ピット処分)

トレンチ処分 (100MBq/ton以下)

- 容器に**固型化しない**放射性廃棄 物を人エバリアのない廃棄物埋 設地に浅地中処分する
- 天然バリアによる遮蔽機能・移 行抑制
- ピット処分(100TBq/ton以下)
- 容器に**固型化した**放射性廃棄物 を人工バリアを設置した廃棄物 による浅地層処分
- 人工バリアの閉じ込め機能、天 然バリアの移行抑制機能
- 人工バリアと天然バリアの遮蔽 機能

トレンチ処分

ピット処分

飛灰洗浄水から作製したCs含有ガラス固化体の処分

- 灰洗浄によりCsは全て洗浄水に溶出、洗浄水は飛灰量の5倍量 (9.6万m³)
- 土壌推定処理量(環境省ケースⅣ 物質収支詳細数値)65万tを(比重1として) 採用し、灰処理と同様な飛灰組成、量、および灰洗浄水組成、量と仮定(土壌処理 の場合の洗浄水は27万m³) 合計36.6万m³
- 飛灰の放射能濃度24万Bq/kg、灰洗浄水に溶存するCs 3.5 g/m³
- 実機でのガラス充填量を150 kgとし、Cs充填量を10 wt% (ケース
 ①)および15 wt% (ケース②)と想定

含有Cs	Cs回収総量 (kg)	イオンドラム本数	イオンドラム本数
(g/m³)		ケース① (本)	ケース② (本)
3.5	1281	86	57

全Csの 放射能濃度	ガラスに対してのCs含有量 10 wt% 15 kg-Cs (ケース①)		ガラスに対してのCs含有量 15 wt% 22.5 kg-Cs (ケース②)	
GBq/kg-Cs	GBq/kg-固化体	TBq/ドラム	GBq/kg-固化体	TBq/ドラム
68.6	6.83	1.03	10.2	1.54

- Cs含有量を3.5 g/m³と想定すれば、灰、土壌処理の最終処分形態としてのインドラム数量は100本以下。低レベル廃棄物としてピット処分可能。
- ガラスの比重2.5t/m³、ケース①のガラス体積5.16m³→7万分の1

飛灰洗浄水から作製したCs含有ガラス固化体の処分

- ・ ピット処分:上限濃度: Cs-137 (<u>100TBq/ton</u>)
- 200Lドラム缶充填ガラス固化体を処分を考える。

浅地中コンクリートピット処分の概念図

- ピット処分の最大放射線量を上回らず、
 アパタイト充填ドラム缶を処分できる。
- 放射性Cs含有アパタイトを充填したドラム缶の発熱量
 を以下の条件で計算。
- ✓ 廃棄体: 200Lドラム缶 (内径: 0.285m、 厚み: 2mm、
 外径: 0.287m、高さ: 0.844m、密度: 7850 kg/m³、
- ✓ 境界条件:ドラム缶より外側<u>全方位断熱条件</u>
- ✓ 廃棄体1本当たりの放射性Cs積載量:0.32g程度

全方位断熱という最も厳しい条件でも、放射性Cs含有量1.35g(含有率0.0002wt%)以下で あればガラス固化体の中心温度はガラス転移温度(525℃)には到達せず、ガラス状態を安定 に維持できる。

ドラム缶当たり6.75gの放射性Cs含有する時(含有 率0.001wt%)のドラム缶の放射線量の時間変化は

まとめ

<u>コールド試験</u>

- Cs/K濃縮係数 PB-MC:529, CuHCF:2203, NiHCF:9625
- NH₄+処理により、溶出液組成でCs/K = 9.33 (PB-MC), 34.5 (CuHCF)を達成
- 水による振盪・溶出操作により、吸着剤燃焼残渣から吸着Csの全量を回収可能
- Cs充填量を対ガラスで10 wt%にすれば、Cs/K=1程度までK含有しても均質な 固化体が作製可能
- CuHCFで吸着、NH₄+後処理(Cs/K= 34.5)により得たCs水溶液組成を用いたガ ラス固化体作製において、均質なポルサイト含有ガラス固化体の作製に成功。
- 作製した固化体は非常に高い耐水性を有し、Csの安定固化が可能(規格化浸出 率:3.9×10⁻⁶ g/cm²/day, L値:13.2)。規格化浸出率において、他の低温固 化技術であるセメントやセラミックス比較して、4桁程度小さい値を達成

<u>ホット試験</u>

- インドラム式ガラス固化プロセスー連の試験を実施
- 放射能収支のずれは3%程度(→吸着剤残渣の水分量を1.8 g程度と仮定すれば一 致)であり、放射性Csの完全なトレースに成功

<u>物質収支・最終処分</u>

● Cs含有量を3.5 g/m³と想定すれば、灰、土壌処理の最終処分形態としてのインドラム数量は100本以下あり、低レベル放射性廃棄物としてのピット処分可能