実証試験実施項目の詳細

(1) 加水分解工程

調査項目	目 的	確 認 方 法
①反応条件-反応時間	基本 3 時間とした反応時間	加水分解反応開始(所定温度到達)後、所定時間
の影響	を5時間まで延長して、抽出	毎に反応液をサンプリングノズルより採取。採取
	率の経時変化を調査する。	後、直ちに遠心分離で油水分離を行い、サンプル
		「四の反応を停止させ、個水を分取した後、分析へ。 【評価項目:油相中リン濃度、水相中リン濃度、
		サンプル油水比、温度
②反応条件-アルカリ	基本1倍/油としたアルカリ	同上
添加量の影響	水溶液添加量を 1.5 倍/油、2	
	倍/油に変更して、抽出率の	
	経時変化を調査する。	Lu
③反応条件-攪拌機回	回転数を3通りに変更し、抽	加水分解後、90℃で静置分離を行い、所定時間毎
転数の影響	出率の経時変化及び油水分離の経時変化を調査する。	(1時間毎?〜最大 20時間) に液面付近の油相を 昇降ノズルにより採取し、分析へ。
	神の性时を11を加重する。	【評価項目:油相中リン濃度】
④反応条件-最適の処	上記①~③の結果より最適	最適条件で加水分解し、90℃×20時間で静置分離
理条件を確認	の条件を決定し、静置分離後	した後、液面付近の油相を昇降ノズルにより採取。
	の油相中リン濃度、水相中	また、底部付近の水相をサンプリングノズルから
	PCB 濃度を調査する。	採取し、それぞれを分析へ。
		【評価項目:油相中リン濃度、水相中PCB濃度、
 ⑤反応条件−撹拌翼の	基本フルゾーン翼とした撹	動粘度、密度、リン酸エステル濃度、無機物濃度】 上記③と同じ
影響		
)	出率の経時変化及び油水分	
	離の経時変化を調査する。	
⑥処理油に対する洗	処理後の油相中リン濃度が	最適条件で静置分離した後の油相を反応槽へ供給
浄処理の効果確認	100mg/kg を超過した場合、	し、NaOH 水で 90℃×3 時間で洗浄し、90℃×20
	処理後油をNaOH水で90℃×	時間で静置分離した後、上記と同じ方法でサンプ
	3 時間洗浄し効果を確認する。	リングし、分析へ。 【評価項目:油相中リン濃度、水相中PCB濃度】
⑦廃アルカリに対す	処理後の水相中 PCB 濃度が	最適条件で静置分離した後の水相を反応槽へ供給
る抽出処理の効果	5000mg/kg を超過した場合、	し、鉱物油 D8 で 90℃×3 時間で洗浄し、90℃×20
確認	処理後油を鉱物油で 90℃×	時間で静置分離した後、上記と同じ方法でサンプ
	3 時間洗浄し効果を確認す	リングし、分析へ。
	3.	【評価項目:油相中リン濃度、水相中 PCB 濃度】
⑧リン濃度が異なる 他層油への適用確	基本 1.8%としたリン化合物 含有 PCB 油のリン濃度を	上記①と同じ
他唐曲への週用唯 認	百月 PCB 価のリン 優度を 1.6%、1.4%に変更し、最適条	
br.	件にて抽出率の経時変化を	
	調査する。	
⑨二段反応	上記⑥で使用した NaOH 水が	上記①と同じ
	加水分解処理用のアルカリ	
	として再利用可能か調査	
⑩反応条件-反応温度	基本 90℃とした反応温度を	上記①と同じ
の影響	70℃、80℃に変更し、抽出率 の経時変化を調査する。	
⑪リン化合物含有 PCB	リン化合物含有 PCB 油のば	処理前油のみを反応槽内で撹拌し、サンプリング
油の	らつきを調査	ノズルより採取し、分析へ。
性状分析		【評価項目:リン濃度、PCB濃度、動粘度、密度、
		リン酸エステル濃度、無機物濃度】

⑫排気ガスの性状分	反応中の排気ガス中の PCB	最強条件での加水分解反応中の排気ガスをベント
析	濃度を調査	コンデンサ前後、活性炭槽後の3点で採取し、分
		析へ。
		【評価項目:排気中 PCB 濃度】
⑬反応析出物の調査	反応析出物の有無・物性を調	反応槽ポンプ手前のストレーナ差圧を測定、差圧
	查	上昇時または実証試験後に閉塞物を回収し、分析
		<u></u> ~₀
		【評価項目:組成・物性評価、ストレーナー差圧】
⑭反応槽の耐蝕調査	NaOH、リン酸 Na 等による腐	反応槽内にテストピースを備え付け、実証試験終
	食を調査	了後に回収し、分析へ。
		【評価項目:腐食評価】

(2) 静置分離工程

調査項目	目 的	確認 方法
①静置分離条件-深さ	90℃×20 時間静置分離後、	最適条件で加水分解後、90℃で静置分離を 20 時間
方向(油相)	異なる深さで油相中リン濃	行い、深さの異なる油相(液面、-100mm、-200m)
	度を調査し、深さ方向の分離	を昇降ノズルにより採取し、分析へ。
	度の分布を調査する。	【評価項目:油相中リン濃度】
2 "	①試験時の一定排液量毎の	①試験終了時に一定排液量毎(底部、10L、20L)
(水相)	水相中 PCB 濃度を調査する。	に水相をサンプリングノズルより採取し、分析へ。
		【評価項目:水相中PCB濃度】
③静置分離条件-分離	静置分離温度を常温、40℃	加水分解後(最強条件時)、所定温度で静置分離を
温度(油相)	(基本 90℃) に変更し、静	行い、
	置分離の経時変化を調査す	所定時間毎(1 時間毎?~最大 20 時間)に液面付
	る。	近の油相を昇降ノズルにより採取し、分析へ。
_		【評価項目:油相中リン濃度】
4 "	②試験終了時の底部付近の	②試験終了時に底部付近の水相をサンプリングノ
(水相)	水相中 PCB 濃度を調査する。	ズルより採取し、分析へ。
		【評価項目:水相中 PCB 濃度】
⑤静置分離条件-最強	上記①~④の結果より最適	上記①と同じのため、不要。
条件の確認	条件を決定し、静置分離後の	
	油相中リン濃度、水相中 PCB	
	濃度を調査する。	
⑥中間層の発生確認	中間層生成の有無・物性を調	試験終了時に静置分離槽を全量排液する際、アク
	査する。	リル容器等で受け、中間層の有無を確認する。
		【評価項目:中間層リン濃度、中間層 PCB 濃度、
⑦排気ガスの性状分	送液時の排気ガス中の PCB	定性分析】 送液時の排気ガスをベントコンデンサ前後、活性
一切排気ガスの性状分 析		
ו ער	仮皮で明色りる。	【評価項目;排気中 PCB 濃度】
⑧静置分離槽構造の	 上下に配置した槽を配管で	不要。
変更	直結し、界面高さを配管内に	1`女。
《 入	調整し、配管をバルブ閉止	
	後、上下からそれぞれ排液す	
	る。	
	1 9 0	