処理技術に関する最近の技術動向(平成14年10月時点)

(1)液処理に係る最近の技術動向

処理方式	処理技術の改良等	自家処理等の実績
脱塩素化分解方式(金属ナトリウム分解)	・ 実証を通じた反応条件の改善。 ・ 処理工程の改善による薬剤消費 量の低減。 ・ 前処理工程からの不純物、混入 物を想定した液処理の実証。	・ 高濃度 PCB の液処理について、 自家処理の実績を追加(処理完 了1施設、処理実施中1施設、 建設中1施設)。 ・ 環境事業団による北九州事業の 第1期施設の液処理方式として 採用され、現在、設計中。
"(アルカリ分解)	・ 実証を通じた反応条件の改善。 ・ 前処理工程からの不純物、混入 物を想定した液処理の実証。	 高濃度 PCB の液処理について、 自家処理の実績を追加(建設中 1施設)。 低濃度 PCB の液処理について、 自家処理を開始(処理実施中2 施設)。
"(水素分解)	・ 実証を通じた反応条件の改善。 ・ 前処理工程からの不純物、混入 物を想定した液処理の実証。	・ 高濃度 PCB の液処理について、 新たな実証プラントを設置し、 実績を追加。特に真空加熱分離 液の処理に関して様々な実証を 実施。
光分解方式	・ 実証を通じた反応条件の改善。 ・ 前処理工程からの不純物、混入 物を想定した液処理の実証。	・ 高濃度 PCB の液処理について、 自家処理を開始(処理実施中 1 施設)
水熱酸化分解方式	・ 実証を通じた反応条件の改善。 ・ 前処理工程からの不純物、混入物を想定した液処理の実証。 ・ スラリー化した含浸物の分解処理を、自家処理施設で実証。 ・ 排気、排水について、PCB濃度のオンラインモニタリング技術を開発し、自家処理施設で実証。 ・ 排水を再利用する技術についても具体的に提案。	・ 高濃度 PCB の液処理について、 自家処理の実績を追加(処理実 施中1施設、建設中1施設)。
還元熱化学分解方 式	・実証を通じた反応条件の改善。	・ 実規模施設を設置し、運転安全 性を確認(PCB は未処理)。

(2)前処理に係る最近の技術動向

	処理技術の改良等	自家処理等の実績
洗浄方式	・ 実証を通じた処理条件の改善。 ・ より有害性の低い洗浄溶剤への変更と、これに伴う処理工程の改善。 ・ コンデンサの素子等の含浸性部材について、PCBの除去を実証。 ・ 含浸性部材について、真空加熱分離との組合せによる PCBの除去を実証。	・高圧トランス、コンデンサ等の容器処理について、自社処理を開始(処理実施中1施設、中1施設、中1施設。 ・高圧トランス、コンデンサ等の容器処理について、新たな実証プラントを設置し、一貫処理の実証を実施(2施設)・環境事業団による北九州事業の第1期施設の前処理方式として採用され、現在、設計中。
真空加熱分離方式	・実証を通じた処理条件の改善。・安定器について、PCBの分離除去を実証。・ウエス等の各種汚染物についてPCBの分離除去を実証。	・ 実規模に近い実証施設により、 様々な処理対象物について、実 証を実施。 ・ 環境事業団による北九州事業の 第1期施設において、洗浄によ る除去の困難な含浸性部材に係 る PCB 除去方式として採用さ れ、現在、設計中。